

LIMERICK INSTITUTE OF TECHNOLOGY INSTITIÚID TEICNEOLAÍOCHTA LUIMNIGH

### LIMERICK INSTITUTE OF TECHNOLOGY

## **SPRING EXAMINATIONS 2018/2019**

| MODULE:                       | COMP07028 - Statistics, Algorithms                                       | & Al                     |
|-------------------------------|--------------------------------------------------------------------------|--------------------------|
| PROGRAMME(S):<br>LC_KGDVM_KTH | Bachelor of Science (Honours) Game                                       | s Design and             |
| LC_KCPTM_JTH                  | Bachelor of Science Computing                                            |                          |
| YEAR OF STUDY:                | 3                                                                        |                          |
| EXAMINER(S):                  | Eugene Kenny<br>Mr. Damien Costello                                      | (Internal)<br>(External) |
| TIME ALLOWED:                 | 3 Hours                                                                  |                          |
| INSTRUCTIONS:                 | TIONS: Answer 2 questions from Section A and 2 questions from Section B. |                          |
|                               | All questions carry equal marks.                                         |                          |

#### PLEASE DO NOT TURN OVER THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO.

The use of programmable or text storing calculators is expressly forbidden. Please note that where a candidate answers more than the required number of questions, the examiner will mark all questions attempted and then select the highest scoring ones.

Requirements for this paper: 1. Calculators

# **SECTION A**

#### **QUESTION 1**

[25 Marks]

- a) Define adjacency matrices and adjacency lists giving suitable **[10 Marks]** examples illustrating how they can be used to represent directed, undirected, weighted and unweighted graphs.
- **b)** Run *depth-first search* on the digraph below, starting at vertex A. **[5 Marks]** Assume the adjacency lists are in sorted order: for example, when exploring vertex F, consider the edge  $F \rightarrow C$  before  $F \rightarrow E$  or  $F \rightarrow H$ .



c) Consider the following weighted graph with 9 vertices and 19 edges. [10 Marks] Note that the edge weights are distinct integers between 1 and 19.



- (i) Complete the sequence of edges in the MST in the order that *Kruskal's algorithm* includes them.
- (ii) Suppose that the edge D-I of weight *w* is added to the graph. For which values of *w* is the edge D-I in a MST?
- (iii) Complete the sequence of edges in the MST in the order that *Prim's algorithm* includes them. Start Prim's algorithm from vertex A.

[25 Marks]

- a) Convert the regular expression ( a ( b \* | c ) \* ) into an equivalent NFA **[10 Marks]** (nondeterministic finite state automaton).
- b) Suppose that you run the Boyer-Moore algorithm to search for the [10 Marks] pattern

IDOFTHE

in the text

**QUESTION 2** 

MENDEROFROADSWITHTHEAIDOFTHE

Trace the running of the algorithm, circling the characters in the pattern that get compared with the text.

c) If *M* is the length of the pattern string to be matched and *N* is the [5 Marks] length of the text string, what is the running time for the Brute-force substring matching algorithm for typical inputs (in English texts say) and in the worst case. Give an outline proof for both cases.

| QUESTION 3 |                                                                                                                                          | [25 Marks] |
|------------|------------------------------------------------------------------------------------------------------------------------------------------|------------|
| a)         | What is a Reduction? What does it mean to say that one problem reduces to another?                                                       | [10 Marks] |
| b)         | What does it mean to say that a problem is in <i>P</i> or in <i>NP</i> ? What does it mean to say that a problem is <i>NP</i> -complete? | [10 Marks] |
| c)         | What does in mean for a problem to be <i>intractable</i> ? What approaches can taken when faced with an intractable problem.             | [5 Marks]  |

### **SECTION B**

#### **QUESTION 4**

[25 Marks]

For the 8-puzzle problem, given this initial starting state:

| 2 | 8 | 7 |
|---|---|---|
| 3 | 1 | 4 |
| 5 | 6 |   |

- a) Show the search tree that results from using *breadth-first-search* **[15 marks]** (down to level 2) and *depth-first-search* (down to level 3) from the initial starting state above. Assume level zero is the root of the tree.
- b) Describe the terms *complete* and *optimal* with regards to evaluating [10 marks] search strategies?

Are either depth-first-search or breadth-first-search complete or optimal? Justify your answer.

#### **QUESTION 5**

[25 Marks]

Consider the following scenario:

*d* has been murdered. *a*, *b*, and *c* are suspects (i.e., at most one of *a*, *b*, and *c* are guilty). *b* claims that he did not know the victim *d* (i.e., if *b* did know *d*, then *b* is lying). *a* and *c* claim that *b* did know *d* (i.e., if *b* did not know *d*, then *a* and *c* are lying). Anyone who lies is guilty.

- a) Express the key facts and relationships using *first order predicate* [5 marks] *calculus*.
- b) Convert the expressions above into clauses in conjunctive normal [10 marks] form (CNF).
- c) Prove using the resolution refutation process that *b* committed the **[10 marks]** murder (is guilty).

| QUE<br>a) | <b>STION 6</b><br>What are the main problems in reasoning about actions and change?                                                                                                                                                  | [25 Marks]<br>[5 Marks] |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| b)        | What is meant by an operator in the context of STRIPS?                                                                                                                                                                               | [5 Marks]               |
| c)        | For the operators and initial state description given below, explain how a regression planner searches for a plan to satisfy a goal, and give an example of a plan that achieves the goal $On(b, a) \land On(c, b) \land OnTable(a)$ | [15 Marks]              |

- blocks are represented by constants: a, b, c, ... etc.
- states are described using the following predicates:

| block x is on block y                      |
|--------------------------------------------|
| block x is on the table                    |
| there is no block on top of block <i>x</i> |
| the arm is holding block x                 |
| the arm is not holding any block           |
|                                            |

- initial state:  $On(c, a) \land OnTable(a) \land OnTable(b) \land ArmEmpty$
- goal state:  $On(b, a) \wedge On(a, c) \wedge OnTable(c)$
- operators:

[Holding(x), Clear(y)] **STACK**(x, y) [On(x, y), ArmEmpty,  $\neg$ Holding(x),  $\neg$ Clear(y)]

[On(x, y), Clear(x), ArmEmpty] **UNSTACK**(x, y) [Clear(y), Holding(x),  $\neg On(x, y)$ ,  $\neg ArmEmpty$ ]

[OnTable(x), Clear(x), ArmEmpty] **PICKUP**(x) [Holding(x), ¬OnTable(x), ¬ArmEmpty]

[Holding(x)] **PUTDOWN**(x) [OnTable(x), ArmEmpty, ¬Holding(x)]